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Abstract. A relativistic two-particle system with an arbitrary linear combination of scalar and
vector time-asymmetric Fokker-type interactions in a two-dimensional spacetime is considered
within the framework of the front form of dynamics. It is shown that the corresponding mass-shell
equation takes the form of a linear relation between the generators of the Lie algebra so(2, 1).
An algebraic quantization of the system is proposed and a closed form for the mass spectrum
is obtained. The relativistic wave equation obtained by Barut and Rasmussen for the H atom is
generalized to the case of an arbitrary linear combination of scalar and vector interactions. An
extension of the results to the system in four-dimensional spacetime is suggested.

1. Introduction

More than 20 years ago, Barut and Rasmussen [1, 2] proposed a covariant wave equation
describing the relativistic hydrogen atom—the system of two charged particles with arbitrary
rest massesm1 andm2 under the influence of mutual electromagnetic interaction. The starting
point of their treatment was the common group structure of both the non-relativistic two-body
Coulomb problem and the Dirac spinor equation for the electron. In the two cases the same
dynamical group SO(2, 4) arises. Using this analogy, the cited authors have postulated an
infinite-component relativistic wave equation [1, 3–5] of the form

(JµPµ + B�4 +D)|�̃(P )〉 = 0 (1.1)

where Jµ is the conserved matter current,

Jµ = A1�µ + A2Pµ + A3�4Pµ (1.2)

µ = 0, 3, the operators �µ and �4 belong to the Lie algebra so(2, 4) of the conformal
group SO(2, 4) and Pµ is the total momentum of the system. In the rest frame, where
Pµ = (M, 0, 0, 0), PµPµ = M2 > 0, equation (1.1) becomes

(A1M�0 + A2M
2 + (A3M

2 + B)�4 +D)|�(M)〉 = 0. (1.3)

The numerical coefficients A1, A2, A3, B and D entering equations (1.1) and (1.2) can be
determined by comparison with corresponding non-relativistic and one-body Klein–Gordon
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calculations. For the case of electromagnetic interactions, which is the only case considered
in the literature [1, 4], they turn out to be

A1 = 1 A3 = 1

2m2
B = m2

2 −m2
1

2m2
(1.4)

A2 = α

2m2
D = −αm

2
1 +m2

2

2m2
(1.5)

where α denotes an interaction constant (a product of the charges).
Equation (1.3) can be solved in a purely algebraic manner that enables one to obtain

the mass spectrum, bound and scattering states and even to describe the relativistic Coulomb
scattering and relativistic photo-effect [1–5]. Many problems of non-relativistic and relativistic
quantum mechanics can be transformed into the form (1.3) and treated similarly in an algebraic
way [3, 4]. In all such treatments, the inner states of the system are determined by a three-
dimensional subalgebra so(2, 1) = sl(2,R) of the Lie algebra so(2, 4). This subalgebra,
which is the Lie algebra of the Lorentz group in 2 + 1 dimensions, contains the operators �0

and �4 entering equation (1.3).
Rather unexpectedly, the same algebraic structure has been discovered for the classical

two-particle one-dimensional systems with Coulomb-like interactions within the framework
of relativistic direct interaction theory [6]. Such a theory constitutes one more approach to
the consistent investigation of relativistic composite systems without explicit introduction
of field quantities with their own degrees of freedom [7–9]. Nevertheless, it is possible
to consider relativistic direct interactions with certain field-theoretical counterparts. Such
considerations are especially effective when the processes of emission or absorption of real
(not virtual) quanta are absent or inessential. A well known example is provided by time-
symmetric Fokker–Wheeler–Feynman electrodynamics [7]. In this theory the motion of a
charged particle is determined by the (time-symmetric) half-sum of retarded and advanced
fields that are produced by other particles of the system. This approach has been extended to
the wide class of interactions within the terms of the Fokker-type action integrals [8–10]. The
latter are also capable of describing time-asymmetric models. In such models (for example,
for the two-particle system) the first particle moves in the advanced field of the second one,
which in turn is subject to the retarded field of the first one. Such models were extensively
investigated (mainly in the electromagnetic case) because they admitted an exact solution of
the relativistic two-body problem in the two-dimensional spacetime [6, 11, 12] as well as in the
four-dimensional one [13, 14]. The integrability of all such models has been demonstrated for
the two cases in [15] and [16, 17], respectively, by using certain forms of relativistic dynamics.
In recent years it has been demonstrated that Fokker-type action integrals can be applied for
a semiphenomenological description of two-particle relativistic confinement models [18] and
the two-body system with gravitational interaction [19]. The same integrals can be used for the
covariant description of spinning particle systems with electromagnetic and scalar interactions
[20].

In particular, it has been shown that the front form of dynamics in the two-dimensional
spacetime is free from all the difficulties connected with the no-interaction theorem [15]. In
this form of dynamics the Poincaré-invariance condition does not forbid the existence of usual
interaction Lagrangians for theN -body problem, depending on the derivatives of the order not
higher than the first in the terms of physical coordinates of the particles. The fulfilment of the
mentioned conditions implies via Nöther’s theorem the existence of corresponding integrals of
motion which reduce the relativistic two-body problem to the quadratures. The same is true for
the two-body problem in the four-dimensional spacetime, if the isotropic forms of dynamics
are used [16, 17]. Such ‘standard’ Lagrangians contain expressions, which correspond to
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time-asymmetric interactions, mediated by linear massless relativistic fields of various tensor
ranks.

Consequently, the Hamiltonian description can be obtained by means of the standard
Legendre transformation with covariant (in a given form of dynamics) particle coordinates as
canonical variables. This opens the way to quantization, but the complicated dependence
of relativistic interaction Hamiltonians on the canonical coordinates and momenta faces
us with a factor ordering difficulty as well as with certain subtle points of the relativistic
coordinate representation. Fortunately, it can be observed that for a two-particle system in
the two-dimensional spacetime the classical mass-shell equation takes the form of a linear
relation between the generators of the algebra so(2, 1). Demanding the preservation of
that relation after quantization, we come to the wave equations of the form (1.3). In such
a way, the relativistic quantum mechanical two-body problem is transcribed into algebraic
language. Moreover, equation (1.3) contains all the coefficients, entering the full four-
dimensional equation (1.1), and these coefficients are determined by the consideration in
the two-dimensional spacetime. Therefore, we may establish the relativistic wave equation
(1.1) for other interactions besides the electromagnetic one. The demonstration of this is
the main purpose of this paper. It should be stressed that a desirable algebraic structure
is not postulated on the outside. It arises in a natural way from the classical phase space
consideration.

The paper is organized as follows. In the next section, we briefly review the Fokker-type
action formalism and its relation with time-symmetric and time-asymmetric field interactions.
We then introduce the concept of the front form of dynamics in the two-dimensional spacetime
and outline the classical Hamiltonian description of the two-particle system on the line with
linear superposition of the time-asymmetric scalar and vector interactions. The realization
of phase space for such a system as orbits of the coadjoint representation of the Lie algebra
so(2, 1) is also pointed out. In section 3 we discuss the algebraic quantization of the system
and represent some of its results. Section 4 is devoted to the four-dimensional generalization.
Corresponding generators of the algebra so(2, 1) are written out and mass spectra for an
arbitrary linear superposition of scalar and vector interactions are obtained. A comparison
with the results of quasirelativistic approximation is carried out. We also include our four-
dimensional results in the framework of the Bakamjian–Thomas model [21], supplemented
by a certain spacetime interpretation. Finally, we briefly discuss the results and make some
comments about unsolved problems and perspectives.

2. Fokker-type action integrals

One of the most interesting and promising fields in the classical relativistic direct interaction
theory is the formalism of Fokker-type action integrals [8–10]. The reason for its physical
importance consists in the clear connection between this formalism and the classical field
theory.

Let us consider an N -particle system described by the parametric equations of particle
worldlines

γa : R → M4 τ �→ xµa (τ ) a = 1, N (2.1)

in the Minkowski spacetime M4 endowed with the metric ‖ηµν‖ = diag(1,−1,−1,−1). The
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most general Fokker-type action integral can be written in the form [10]

S = Sf + Sint = −
N∑
a=1

ma

∫
dτa

√
ẋ2
a −

∑∑
a<b

∫
dτa

∫
dτb

√
ẋ2
a ẋ

2
b�ab(ρab, ωab, σab, σba)

(2.2)

where ẋµa ≡ dxµa (τa)/dτa and �ab are arbitrary Poincaré-invariant functions of the following
scalar arguments:

ρab = ηµν(x
µ
a − x

µ

b )(x
ν
a − xνb ) ωab = ηµνẋ

µ
a ẋ

µ

b√
ẋ2
a ẋ

2
b

σab = ηµν(x
µ
a − x

µ

b )ẋ
ν
a√

ẋ2
a

. (2.3)

The functions �ab of interest in this paper are of the form

�ab = gagbF (ωab)G(xa − xb) (2.4)

where ga ∈ R denote the coupling constants (particle ‘charges’). If the function G(x) is the
Green function of the d’Alembert equation and F(1) = 1, then in the non-relativistic limit
(c → ∞) the action integral (2.2) gives rise to the Coulomb interaction potential. For instance,
the functions

�ab = eaebωabδ(ρab) (2.5)

lead to the Wheeler–Feynman electrodynamics [7]. In this case

G(xa − xb) = G(ρab) = δ(ρab) (2.6)

is the time-symmetric Green function of the d’Alembert equation.
The description based on the time-symmetric Green function (2.6) leads to a non-local (in

time) Lagrangian function and, therefore, to the difference–differential equations of motion
[10, 22]. The known Hamiltonization procedures for such equations (see [9, 22, 23]) use
various approximations and are too complicated for immediate quantization. There exist
simpler (but of course less realistic) models based on the time-asymmetric Green functions
of the d’Alembert equation. For example, we can use in equation (2.4) the retarded Green
function

G(x) = 2)(x0)δ(x2). (2.7)

It gives the action (2.2) with

Sint = −2
∑∑
a<b

gagb

∫
dτa

∫
dτb

√
ẋ2
a ẋ

2
bF (ωab))(x

0
a − x0

b )δ(ρab) (2.8)

which will be the main subject of our following consideration. If

F(ω) = ωs s = 0, 1 (2.9)

then the action (2.8) will correspond to the particle interaction through a local relativistic
massless field of rank s in such a way that the ath particle responds only to the retarded field
produced by particle b and the bth particle responds to the advanced field produced by particle
a. Because of the antisymmetry in the relative time variable of the action integral (2.8) such
theories are called time asymmetric [8, 10].

Reparametrization-invariance of Fokker’s action (2.2) allows one to apply the useful notion
of forms of relativistic dynamics [9], introduced by Dirac [24]. Using a time-asymmetric Green
function one can obtain local single-time Lagrangians for the two-particle system in the four-
dimensional Minkowski space by means of the lightcone form of dynamics [16, 17] as well
as for an N -particle system in the two-dimensional spacetime by means of the front form of
dynamics [15]. The latter case will be considered in the next section.
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3. The front form of relativistic dynamics in M2 and scalar and vector time-asymmetric
interactions

The front form of relativistic dynamics in the two-dimensional spacetime M2 with coordinates
(x0, x) corresponds to the foliation of M2 by isotropic hyperplanes [15]

x0 + x = τ. (3.1)

This foliation defines the simultaneity relation between the events of the particle worldlines.
The quantity τ plays the role of the evolution parameter of a system. The motion of particles is
described by the functions xa(τ ) and the parametric equations (2.1) of the particle worldlines
take the form

x = xa(τ ) x0 = τ − xa(τ ). (3.2)

Within the framework of the Lagrangian formalism the functions xa(τ ) are determined by
Hamilton’s action principle δS = 0 with an action integral

S =
∫

dτ L. (3.3)

The general structure of the Lagrangian function L follows from the Poincaré-invariance
conditions. Fortunately, the family of simultaneity hyperplanes (3.1) is invariant with respect
to the Poincaré group P(1, 1). This fact permits the existence of non-trivial interaction
Lagrangians, which do not contain derivatives of orders higher than the first one. Such
Lagrangians for an N -particle system can be written in the form [15]

L = −
N∑
a=1

maγ
−1
a +

∑∑
a<b

rabVab(rabγa, rabγb) (3.4)

where γ−1
a ≡ √

1 − 2va , va ≡ dxa/dτ , rab ≡ xa − xb and Vab(y1, y2) are arbitrary functions
of the two indicated arguments.

As a consequence of the general properties of Lagrangian mechanics, the invariance under
a three-parameter Poincaré group P(1, 1) leads to three conservation laws: of the energy E,
of the momentum P and of the centre-of-inertia integral of motion K . They are given by [15]

E =
N∑
a=1

va
∂L

∂va
− L P =

N∑
a=1

∂L

∂va
− E K = −τP +

N∑
a=1

xa
∂L

∂va
. (3.5)

It can be demonstrated that the Fokker-type action integral (2.8) in the front form of
dynamics in M2 takes the form (3.3) with the Lagrangian [15]

L = −
N∑
a=1

maγ
−1
a −

∑∑
a<b

gagb
γ−1
a γ−1

b

rab
F (δab) rab > 0 (3.6)

where

δab ≡ 1

2

(
γa

γb
+
γb

γa

)
. (3.7)

We note that the initial asymmetry with respect to the particle permutations in action
(2.8) is reflected in the asymmetric conditions rab > 0, a < b. Expression (3.6) is obtained
by means of a general scheme of transition from the Fokker-type action (2.2) to its single-
time form described in [10]. Generally, this procedure leads to the Lagrangians with shifted
time arguments of the particle coordinates. The crucial peculiarity of the front form in the
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two-dimensional spacetime consists in the fact that this shift can be got rid of (for details see
[15]).

In the following, we shall consider only the two-particle system. The integrals of motion
P± ≡ E ± P corresponding to the Lagrangian (3.6) are given by

P+ = m1γ1 +m2γ2 − α

|r|B(δ) (3.8)

P− = m1γ
−1
1 +m2γ

−1
2 (3.9)

where

B(δ) = 2
(−δF (δ) + (δ2 − 1)F ′(δ)

)
(3.10)

α = g1g2, r = r12, δ = δ12 and F ′ denotes the first derivative with respect to the indicated
argument. From equations (3.8) and (3.9) we obtain the total mass (inner energy) of the system:

M2 = E2 − P 2 = P+P− = (m2
1 +m2

2 + 2m1m2δ)

[
1 +

α

|r|P+
B(δ)

]−1

. (3.11)

The transition to the Hamiltonian description can be performed by means of the standard
Legendre transformation. The canonical momenta are defined as

p1 = ∂L

∂v1
= m1γ1 − α

|r|
[
−γ1

γ2
F(δ) +

γ1

2γ2

(
γ1

γ2
− γ2

γ1

)
F ′(δ)

]

p2 = ∂L

∂v2
= m2γ2 − α

|r|
[
−γ2

γ1
F(δ) +

γ2

2γ1

(
γ2

γ1
− γ1

γ2

)
F ′(δ)

]
.

(3.12)

Solving the system (3.12) with respect to velocities va and substituting the result into the
expressions (3.5) for the conserved quantities, we obtain the canonical generators of the
Poincaré group P(1, 1). As can be easily demonstrated, after such substitutions the function
(3.11) becomes M2 = M2(rp1, rp2); it depends only on the Poincaré-invariant expressions
rpa and, therefore, has vanishing Poisson brackets with all the generators of the Poincaré
group. These generators are then given by

P+ = p1 + p2 P− = M2/P+

K = −τ(P+ + P−)/2 + x1p1 + x2p2.
(3.13)

They satisfy the following Poisson bracket relations:

{P+, P−} = 0 {K,P±} = ±P±. (3.14)

The system (3.12) was solved explicitly in the case (2.9) for the interactions mediated by
the scalar (s = 0) or vector (s = 1) fields in the work [6]. Here we shall consider an arbitrary
linear superposition of the scalar and vector interactions:

F(δ) = α0 + α1δ (3.15)

where α0 and α1 are arbitrary dimensionless constants. Thus we obtain

M2 = P+
m2

1p2 +m2
2p1 + α(2m1m2α0 − (m2

1 +m2
2)α1)/|r|

p1p2 + α2(α2
1 − α2

0)/|r|2 − αα1P+/|r|
. (3.16)

Although the existence of the proper non-relativistic limit demands F(1) = 1 and, therefore,
α0 + α1 = 1, we shall not put this restriction over the main text of the paper. As was pointed
out by Duviryak [25], the case α2

0 = α2
1 which includes α0 +α1 = 0, leads to a very interesting
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exactly solvable classical model of the relativistic two-particle interaction. The quantum
counterpart of these models will be considered in the following sections.

The separation of external and internal motions is carried out by the choice P+ and
R = K/P+ as new external canonical variables. As internal variables we choose (see [26])

ξ = m2p1 −m1p2

P+
q = r

P+

m
{q, ξ} = 1 (3.17)

where m = m1 +m2.
We note that even in the case of an arbitrary function F(δ) we can obtain the mass-shell

equation

6(q, ξ,M2) = 0 (3.18)

in the implicit (parametric) form. Indeed, inserting (3.12) into (3.17) and using (3.11), we find
the relations

(ξ − ξ0)
2 = 4m2

1m
2
2m

2(δ2 − 1)[F ′ − µ(δF ′ − F)]2

M4B2(δ)
(3.19)

q = αmM2B(δ)

2m1m2(δ − µ)
(3.20)

where we have introduced the following constants of motion:

ξ0 = (m1 −m2)(m
2 −M2)

2M2
µ = M2 −m2

1 −m2
2

2m1m2
. (3.21)

Equations (3.19) and (3.20) give the parametric representation of the mass shell (3.18) in terms
of the parameter δ ∈ [1,∞). Since sign(r) is an integral of motion [15], we shall consider
only the case r > 0 (q > 0). The mass-shell equation (3.18) determines an inner motion of
the system and allows one to integrate the classical two-body problem [27].

4. Algebraic realization of the mass-shell equation

We now return to the examination of the superposition of the scalar and vector interactions
(3.15). Using in equation (3.16) the inner variables (3.17), we find the mass-shell equation in
the form

Y (q, ξ)M2 −X(q, ξ) = 0 (4.1)

where

X = m
(
mm1m2q +m(m2 −m1)qξ + α(2m1m2α0 − (m2

1 +m2
2)α1)

)
(4.2)

Y = m1m2q + (m2 −m1)qξ − qξ 2 + α2(α2
1 − α2

0)q
−1 − αα1m. (4.3)

Following Barut [4], we introduce three functions of canonical variables

J0 = 1

2

(
βqξ 2 +

q

β
+
βQ

q

)
J1 = 1

2

(
βqξ 2 − q

β
+
βQ

q

)
J2 = qξ (4.4)

where β and Q are arbitrary constants (the first of which is necessary only for dimensional
reasons). The functions (4.4) span, under Poisson bracketing, the Lie algebra so(2, 1):

{J0, J1} = J2 {J1, J2} = −J0 {J2, J0} = J1 (4.5)
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and satisfy an identity

J 2
0 − J 2

1 − J 2
2 = Q. (4.6)

The main point consists in the observation that putting

Q = α2(α2
0 − α2

1) (4.7)

we can represent equation (4.1) into the form

J + C = 0 (4.8)

where

J = aJ0 + bJ1 + dJ2 (4.9)

is an element of the Lie algebra so(2, 1) and the constants a, b, d and C are defined by

a = M2

β
+ βm1m2(m

2 −M2) (4.10)

b = M2

β
− βm1m2(m

2 −M2) (4.11)

d = (m2 −m1)(m
2 −M2) (4.12)

C = 2αmm1m2(α0 + α1µ). (4.13)

In other words, the mass-shell equation (4.1) takes the form of a linear relation between the
generators of the algebra so(2, 1). As we shall demonstrate in the next section, the existence of
such an algebraic structure of the mass-shell equation plays a prominent role on the quantum
level and enables one to obtain mass spectra without an explicit realization of the operators in
a certain Hilbert space. Therefore, one can also expect that the algebra so(2, 1) could play an
important role in the classical description.

Defining the Killing form of the element (4.9) as [28]

(J, J ) = a2 − b2 − d2 (4.14)

we obtain

(J, J ) = 4m2m2
1m

2
2(1 − µ2). (4.15)

A natural action of the Lorentz group SO(2, 1) on its Lie algebra by inner automorphisms
preserves the quadratic form (4.14) and the sign of a. Following [28], the non-zero element
J ∈ so(2, 1) will be said to be timelike, spacelike or lightlike, if (J, J ) > 0, (J, J ) < 0 or
(J, J ) = 0, respectively. It is clear that J0 is timelike and J1, J2 are spacelike. The element
(4.9) will be timelike, if µ2 < 1 (|m1 − m2| < M < m), spacelike, if µ2 > 1 (M > m or
0 < M < |m1 −m2|) and lightlike, if µ2 = 1 (M = m or M = |m1 −m2|).

It is well known (the Kirillov–Konstant–Souriau theorem) [29] that each orbit of the
coadjoint representation of the Lie algebra carries a natural symplectic structure. In our case,
the orbits are submanifolds in so∗(2, 1) ∼ so(2, 1) ∼ R

3 [30]. Depending on the value of Q,
they are a one-sheeted hyperboloid

N− = {(J0, J1, J2) ∈ R
3 | J 2

0 − J 2
1 − J 2

2 = Q} (4.16)

if Q < 0, two sheets of the two-sheeted hyperboloid

N σ
+ = {(J0, J1, J2) ∈ R

3 | J 2
0 − J 2

1 − J 2
2 = Q, sign J0 = σ } (4.17)
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if Q > 0, two cones

N σ
0 = {(J0, J1, J2) ∈ R

3 | J 2
0 − J 2

1 − J 2
2 = 0, sign J0 = σ } (4.18)

and the origin of coordinates, if Q = 0. For the given value of Q, determined by (4.7), we
can consider the corresponding manifolds (4.16)–(4.18) as a proper inner phase space N of
the system.

Let us consider the closed 2-form [31]

ω = J 0 dJ 2 ∧ dJ 1 + J 1 dJ 0 ∧ dJ 2 + J 2 dJ 1 ∧ dJ 0

J 2
0 − J 2

1 − J 2
2

. (4.19)

The equations

J0 = J0 J1 =
√
J 2

0 −Q cosϕ J2 =
√
J 2

0 −Q sin ϕ (4.20)

where 0 � ϕ < 2π , J 2
0 > Q, determine an immersion ı : N → so(2, 1). The 2-form (4.19)

is non-degenerate on the orbits and gives the symplectic form on N :

ω|N = ı∗ω = dϕ ∧ dJ0. (4.21)

Using N as the inner phase space for our system can be the key to the global classical
description of the problem. This is especially important because the Legendre transformation
(3.12) � : R

4 → P, where P is a phase space of our problem, is not a global diffeomorphism.
As one can see from (3.12), the momentum variables are not defined, if r → 0 or γa → 0
(the particle velocity reaches the speed of light). Thus, the particle momenta are only local
canonical coordinates. In the same way, we can say that the inner canonical variables q, ξ
form a local chart in the inner phase space. As a result, the global classical evolution of the
system cannot be described only in terms of particle canonical variables p1, p2, x1, x2 (or
collective variables R, P+, q, ξ ) [27].

5. The quantization procedure

The standard approach to quantization of the considered classical problem consists in the
establishing of the correspondence between the canonical generators (3.13) of the Poincaré
group P(1, 1) and some Hermitian operators, determining a unitary representation of the group
in a certain Hilbert space. This determines the squared mass operator M̂2 of the system. The
eigenvalue equation

M̂2ψ = M2ψ (5.1)

describes the stationary states of inner motion. This method has been used in the two-
dimensional spacetime in the front form of dynamics for a number of simple systems [16, 32].
In these papers the Weyl quantization rule and the momentum representation in the Hilbert
space HF

N = L2(RN
+ ; dµFN), dµFN = ∏N

a=1 )(pa) dpa/pa have been used. However, many
difficulties arise when one applies this quantization rule to particle systems with field-type
interactions. The first of them is that the vector interaction violates the positivity condition
for momentum variables pa � 0, which is necessary for the quantum-mechanical front-form
description in the momentum representation [26]. The second difficulty is the cumbersome
form of the integral equations which follows from equations (3.13) and (3.16). Moreover, as
has been shown in [33] for the example of relativistic oscillator-like interaction [32], such a
quantization procedure is not unique. This is connected with the complicated dependence of the
relativistic interaction potentials on the coordinates and momenta. To avoid these difficulties
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we require the quantization scheme to preserve the linear relation (4.8) between the generators
of the group SO(2, 1). Hence, we replace functions (4.4) with Hermitian operators obeying
the commutation relations of the Lie algebra so(2, 1),

[Ĵ0, Ĵ1] = iĴ2 [Ĵ1, Ĵ2] = −iĴ0 [Ĵ2, Ĵ0] = iĴ1 (5.2)

and obtain a quantum-mechanical equation

(Ĵ + C)ψ = 0 (5.3)

where

Ĵ = aĴ0 + bĴ1 + dĴ2. (5.4)

The constant (integral of motion)M2, entering the coefficients a, b, d andC, is now considered
as an eigenvalue of the operator M̂2.

The general structure of the mass spectrum can be found on the basis of the relations (5.2)
and (5.3) without specifying the realization of the operators Ĵ0, Ĵ1 and Ĵ2. Operator Ĵ0 is a
timelike element of the algebra so(2, 1) and as a generator of compact subgroup SO(2) has a
discrete spectrum:

Ĵ0|n〉 = n|n〉. (5.5)

The operator Ĵ1 is spacelike and has a continuum spectrum:

Ĵ1|λ〉 = λ|λ〉 λ ∈ R. (5.6)

Moreover, every timelike element so(2.1) of the form (5.4) has a discrete spectrum with
eigenvalues sign(a)

√
(J, J )n, wheren ∈ Spectrum (J0). It follows from the general arguments

of Bacry ([28], theorem 1, corollary) and will be demonstrated explicitly later. Similarly, the
spacelike element (5.4) has a continuum spectrum

√−(J, J )λ, λ ∈ R. Therefore, the different
elements of the algebra so(2, 1) with the same Killing form (4.14) have the same spectrum.

Let us use the method developed by Barut and Rasmussen [1] (see also [3, 4]) to treat their
equation for the relativistic H atom. First, we consider equation (5.3) with a timelike operator
Ĵ , (J, J ) > 0 (i.e. if |m1 −m2| < M < m). If we perform the transformation

ψ = e−iχ1(Ĵ0−Ĵ1)e−iχ2Ĵ2ψ ′ (5.7)

then a simple calculation shows that after the choice

χ1 = d

a + b
tanh χ2 = 2b + dχ1

2a − dχ1
(5.8)

equation (5.3) takes the form(
sign(a)

√
(J, J )Ĵ0 + C

)
ψ ′ = 0. (5.9)

Using (4.15), (4.10) and (4.13), we obtain(√
1 − µ2Ĵ0 + α(α0 + α1µ)

)
ψ ′ = 0. (5.10)

Considering ψ ′ as an eigenstate |n〉 of the operator Ĵ0, we obtain the equation for the discrete
eigenvalues M2:√

1 − µ2 n + α(α0 + α1µ) = 0. (5.11)
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When n > 0, the solutions to this equation exist, if

α(α0 + α1µ) < 0. (5.12)

These solutions have the form

(M±
n )

2 = m2
1 +m2

2 + 2m1m2

−α2α1α0 ± n

√
n2 + α2(α2

1 − α2
0)

n2 + α2α2
1

. (5.13)

If (J, J ) < 0 (µ2 > 1, i.e. M > m or M < |m1 −m2|), we choose in equation (5.7)

χ1 = d

a + b
tanh χ2 = 2a − dχ1

2b + dχ1
(5.14)

and obtain

(2mm1m2

√
µ2 − 1Ĵ1 + C)ψ ′ = 0. (5.15)

Using (5.6), we find

(M±
λ )

2 = m2
1 +m2

2 + 2m1m2

−α2α1α0 ± λ

√
λ2 − α2(α2

1 − α2
0)

α2α2
1 − λ2

. (5.16)

In the same way one can solve the non-relativistic three-dimensional quantum Coulomb
problem (see [3, 4], where several other examples were considered). The recent paper [34]
gives a similar algebraic treatment of the Coulomb problem in six dimensions.

The eigenvalue n of Ĵ0 is determined by the quantum Casimir invariant (4.6)

Ĵ 2
0 − Ĵ 2

1 − Ĵ 2
2 = Q. (5.17)

The classical Casimir invariant of our problem is determined by (4.7). Its value can be changed
after quantization as a consequence of various possibilities of ordering non-commutative
operators. The quantity Q is the only element of the theory which is undetermined within
the framework of a purely algebraic description. As we shall demonstrate below the
correspondence condition with the one-particle problem in an external field implies that Q
has to preserve its classical value at the quantum level.

As we pointed out in the previous section, the classical value of Q (see (4.7)) can be
positive, negative or zero. It depends on the type of interaction or, more precisely, on the
values of the dimensionless constants α0 and α1. In the pure scalar case α0 = 1, α1 = 0
and Q > 0. In the pure vector case α0 = 0, α1 = 1 and Q < 0. Therefore, the interaction
with Q > 0 (α2

0 > α2
1) we shall call the scalar-type interaction. Interaction with Q < 0

(α2
0 < α2

1) we shall call the vector-type interaction. Let us put ϕ = (−1 +
√

1 + 4Q)/2 so
that Q = ϕ(ϕ + 1). As a result, the scalar-type interaction leads to the discrete class D+(ϕ)

of unitary irreducible representations of the group SO(2, 1) [3, 4, 35]. In the case of the
vector-type interaction we come to the supplementary class D+(ϕ, ϕ). Thus, if Q > − 1

4 , then

n = ϕ + k = (−1 +
√

1 + 4Q)/2 + k k = 1, 2, . . . . (5.18)

In the case of a special linear superposition of the scalar and vector interactions, when
α2

0 = α2
1 (Q = 0), we come to the discrete class D+(0) and eigenvalues of Ĵ0 are integer:

n = k.
Let us consider a few particular cases in more detail. In the case of pure scalar or vector

interactions (2.9) the mass spectrum takes the form

(M±
n )

2
s = m2

1 +m2
2 ± 2m1m2

(
1 − (−1)sα2/n2

)(−1)s/2
. (5.19)
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For the vector interaction the branch (M+
n )

2
1 corresponds to attraction (α < 0) and the branch

(M−
n )

2
1 corresponds to repulsion (α > 0). For the scalar interaction both branches (M±

n )
2
0

correspond to the attraction. Only the branch (M+
n,λ)

2
s has the correct non-relativistic limit.

In the one-particle limit (m1/m2 → 0) we obtain from (5.19)

E = m1
(
1 − (−1)sα2/n2

)(−1)s/2 −m1 (5.20)

that agrees with the one-particle spectrum for the Klein–Gordon problem with the scalar or
vector Coulomb potential for the states with a zero value of the orbital quantum number.

In the case of the vector-type interaction, the expression (5.18) for the quantum number n
has a sense only if the inequality − 1

4 < Q < 0 is satisfied, and we can also consider the state
with k = 0. For the pure vector interaction the inner energy of this ground state is

(M±
ϕ )

2
1 = m2

1 +m2
2 ± 2m1m2

√−ϕ . (5.21)

The quantity (M+
ϕ )1 tends to infinity in the non-relativistic limit [36] and for the one-body

problem gives the expression

m1 + E = m1

[
1
2 − 1

2

√
1 − 4α2

]1/2
� m1|α| (1 + 1

2α
2 + · · ·) (5.22)

which agrees with [37, 38]. The existence of such a strongly bounded ground state is typical
for a one-dimensional electromagnetic interaction.

Equation (5.19) describes the mass spectra of two-particle systems with time-asymmetric
scalar and vector interactions. The spectra of vector type (s = 1) have been obtained by
Staruszkiewicz in the two-dimensional spacetime [13] and by Barut and Rasmussen in four-
dimensional Minkowski space on the basis of an infinite-component wave equation (1.1)
[1, 4, 5]. The two-particle bound state mass spectrum (M+

n )0 for scalar interaction in the
case of equal particle masses m1 = m2 = m/2 turns out to be

(M+
n )0 = m

√√√√ 1
2

(
1 +

√
1 −

(α
n

)2
)
. (5.23)

It has the same form as the mass spectrum obtained by Darewych within the framework of the
reduced scalar Yukawa theory in [39]. The only difference lies in the definition of the quantum
number n. In contrast to (5.18), in the mentioned work the quantum number n takes integer
values: n = k.

In the case of a special linear superposition of the vector and scalar interactions α0 = 1
2ε,

α1 = 1
2 ; ε2 = 1 (Q = 0) the mass spectrum (5.13) becomes

(Mε
n)

2 = m2
1 +m2

2 + 2m1m2ε
4n2 − α2

4n2 + α2
αε < 0. (5.24)

In the case of half-difference (ε = −1) the discrete spectrum exists only for particles with the
same signs of ‘vector charges’ and different signs of ‘scalar charges’. In the non-relativistic
limit the difference between vector and scalar interactions tends to zero and the system becomes
free. The mass spectrum (5.24) for ε = −1 does not have any non-relativistic counterpart.
The possibility of the existence of such essentially relativistic bound states for repulsion is
typical not only for field-type interactions (see, for example, [32]). In the case of a half-sum
(ε = 1) the mass spectrum (5.24) corresponds only to attraction and has a good non-relativistic
limit—the Coulomb energy spectrum. In the one-particle limit it gives

E = m1
4n2 − α2

4n2 + α2
(5.25)

that agrees with the one-particle Klein–Gordon problem with the half-sum of the scalar and
vector Coulomb potential for the states with zero value of the orbital quantum number [3].
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6. Four-dimensional generalizations

The different elements of the algebra so(2, 1) with the same Killing form (4.14) have the
same spectrum. And vice versa, if different equations of the form (5.3) lead to the same mass
spectrum then they contain elements of so(2, 1) with the same Killing form which are related
via the Lorentz transformation. Let us put

ψ = e−iχ1(Ĵ0−Ĵ1)e−i(χ2−)B)Ĵ2 |�(M)〉 (6.1)

in equation (5.3). If we choose

tanh)B = M2 +m2
2 −m2

1

2Mm2
. (6.2)

and parameters χ1, χ2 defined by equation (5.8), then we arrive at wave equation (1.3),(
A1MJ0 + (A3M

2 + B)J1 + A2M
2 +D

)|�(M)〉 = 0 (6.3)

postulated by Barut and Rasmussen [1, 2] with the coefficients A1, A3, B given by (1.4) and

A2 = αα1

2m2
D = α

(
α0m1 − α1

m2
1 +m2

2

2m2

)
. (6.4)

The only difference between equations (6.3) and (1.3) consists in the different realizations of
the Lie algebra so(2, 1) in both equations. We denote that using a different notation for the
elements of the basis of the Lie algebra so(2, 1), i.e. �0, �4 in equation (1.3) and J0, J1 in our
case, respectively.

Therefore, we can postulate the relativistic four-dimensional wave equation of the
form (1.1) for the considered case of an arbitrary linear superposition of scalar and vector
interactions. It is easy to see that the coefficients in equation (6.4) for the pure vector
(electromagnetic) interaction (α0 = 0, α1 = 1) take the values given by (1.4) and (1.5).

It is necessary to point out that we do not postulate the coefficients (4.10)–(4.13). We
obtain the classical mass-shell equation (4.8) and therefore its quantum counterpart (5.3) as a
consequence of the Legendre transformation for the Lagrangian (3.6) which is connected with
the Fokker-type action integral. Thus, spectrum (5.19) of the vector type can be obtained in our
approach by an immediate quantization of the time-asymmetric electromagnetic interaction in
the framework of the Hamiltonian description of a directly interacting particle system in the
front form of dynamics.

One of the possible canonical realizations of the Lie algebra so(2, 1) in some six-
dimensional phase space was indicated by Barut [4]:

J0 = 1

2

[
βqξ 2 +

1

β
q +

βQ

q

]
J1 = 1

2

[
βqξ 2 − 1

β
q +

βQ

q

]
J2 = (q · ξ). (6.5)

Here q =
√
q2

1 + q2
2 + q2

3 , ξ2 = ξ 2
1 + ξ 2

2 + ξ 2
3 , {qk, ξj } = δkj and (q · ξ) = q1ξ1 + q2ξ2 + q3ξ3 is

the Euclidean scalar product. The classical Casimir invariant has the form

J 2
0 − J 2

1 − J 2
2 = Q + L2 (6.6)

where L = q×ξ. We assume that this relation is preserved after quantization and postulate the
quantum wave equation in the form (1.3) with the coefficients (1.4) and (6.4). Then, considering
the common eigenstates |n, H〉 of the operators J0 and L̂2 with L̂2|n, H〉 = H(H + 1)|n, H〉, we
obtain in full accordance with the previous case, the mass spectra in the form (5.13), where

n = − 1
2 + k +

√(
H + 1

2

)2
+ α2(α2

0 − α2
1)

H = 0, 1, . . . , k − 1 k = 1, 2, . . . .
(6.7)
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The expansion up to order c−2 gives the following correction to the energy spectrum of
linear superposition of scalar and vector interactions for the branch (M+

n )
2
k:

E ≈ −m1m2α
2

mn2
0h̄

2

(α0 + α1)
2

2
− α4(α0 + α1)

3m1m2

4mh̄4n4
0c

2

×
[(

1 +
m1m2

m2

) α0 + α1

2
− 2α1 − 4n0(α0 − α1)

2H + 1

]
(6.8)

where n0 = k + H. When α0 + α1 = 1, the last formula corresponds to the energy spectra
obtained in [40] for field-type interactions by means of the approximate relativistic Lagrangians
of order c−2. In the one-particle limit (m1/m2 → 0) we obtain expression (5.20) with the
quantum number n given by (6.7), which agrees with the spectrum of the spinless particle in
the external scalar or vector field.

Thus, equations (5.13) and (6.7) describe a quite profound mass spectrum. It is worthwhile
constructing a relativistic two-particle Hamiltonian description which can lead to the mass
spectrum (5.13) and (6.7). Of course such an ‘inverse problem’ is very ambiguous. However,
our previous consideration (sections 3 and 4) suggests a simple solution as follows. Let
us consider equation (4.8) with the generators J0, J1, J2 of the form (6.5) as a classical
mass-shell equation of the corresponding two-particle problem in M4. Then on the quantum
level we obtain equations (5.3), (5.5), (6.7) and consequently we obtain the mass spectrum
(5.13). However, these quantum equations do not provide the complete quantum relativistic
description. They correspond only to an inner quantum dynamics and do not describe time
evolution of external degrees of freedom. The inner quantum dynamics must be supplemented
by a quantum relativistic description of the system as a whole and a unitary representation of
the Poincaré group P(3, 1). The first and necessary step to include our results into a complete
quantum relativistic Hamiltonian picture in the four-dimensional Minkowski space M4 is the
solution to the similar problem on the classical level.

Our construction is based on a canonical realization (6.5) and the mass-shell equation in
the form (4.8). On the other hand, we can express the squared total mass function in terms of
the generators

M2 = X(J0, J1, J2)

Y (J0, J1, J2)
(6.9)

where

X = m
(
mm1m2β(J0 − J1) +m(m2 −m1)J2 + α(2m1m2α0 − (m2

1 +m2
2)α1)

)
Y = (m1m2β − 1/β)J0 − (m1m2β + 1/β)J1 + (m2 −m1)J2 − αα1m.

(6.10)

Equation (6.9) can describe the inner motion of relativistic two-particle system in six-
dimensional phase space in terms of canonical variables (q, ξ). To obtain the complete
classical relativistic description of the two-body system it is necessary to construct ten canonical
generators of the Poincaré group P(3, 1), which commute with the total mass of the system
(6.9), and find relations between two sets of variables—canonical variables entering the
canonical realization of P(3, 1) and covariant particle coordinates.

It is well known that there are a lot of possibilities to introduce an interaction into canonical
generators of P(3, 1), which specifies stability groupGJ—the subgroup of P(3, 1) containing
generators independent of the interaction. The group GJ determines the Hamiltonian form
of the dynamics. For a given total mass function all the Hamiltonian forms of dynamics are
canonically equivalent [41]. Therefore, taking into account this fact we can easily carry out
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the first part of the programme. Indeed, let us consider well known canonical generators of
the Poincaré group of the Bakamjian–Thomas model [21]:

H = P0 =
√
M2 + P 2 P = P

J̃ = R × P + S

K = −tP + RH +
P × S

H +M
.

(6.11)

Here S and M depend only on inner canonical variables and correspond, respectively, to the
total spin and total mass of the system. The choice of the total mass functionM (which can be
an arbitrary function of inner variables) completely determines the Hamiltonian description.

Let variables P ,R entering canonical generators (6.11) of the Poincaré group, be external
canonical variables of our problem, such that

{Rj , qi} = {Rj , ξi} = {Pj , qi} = {Pj , ξi} = 0 (6.12)

and S = L. Then, choosing the total mass function in the form (6.9), ten functions (6.11)
will satisfy commutation relations of the Poincaré algebra p(3, 1) i.e. determine the canonical
realization of the Poincaré group for our system. Consequently, of (6.12), generators (6.5)
commute with external canonical variables P , R. Furthermore, {Ji, J̃k} = 0. However,
J0, J1, J2 do not form any closed algebraic relations with other generators (6.11) of the Poincaré
algebra. In such a manner the Lie algebra generated by (6.5) appears only as the algebra of
the inner dynamical group SO(2, 1). It is worth noting that the mass-shell equation (4.8) with
the generators of so(2, 1) in the form (6.5) fits into the general structure of the mass-shell
constraint provided that a certain gauge fixing is used in the manifestly covariant Hamiltonian
mechanics on the lightcone [17].

To solve the second task we have to supplement the Bakamjian–Thomas model description
by a spacetime interpretation. The most general solution to the problem of construction of
the covariant particle coordinates in terms of canonical variables was found by Duviryak
and Kluchkovsky in [42]. These authors have proved that for a given total mass function
(which completely determines the Hamiltonian dynamics) one can construct a great deal
of worldlines in M4. This is due to the dependence of the solution to the problem (in the
two-particle case) on six scalar functions of inner canonical variables. Therefore, starting
from the canonical realization (6.11) of the Poincaré group with total mass function (6.9)
we cannot reconstruct the total picture in M4 without ambiguities. However, we can restrict
the ambiguity as described below. In the two-dimensional spacetime we have immediately
obtained the classical Hamiltonian description of the two-particle system with the superposition
of scalar and vector interactions from the time-asymmetric Fokker-type action integral. We
cannot be sure that this is true in M4 for the total mass function (6.9) with arbitrary values
of the coupling constants α0, α1. However, one can show that in M4 there exists such a
relation between the Hamiltonian description with the total mass (6.9) and the time-asymmetric
Fokker action at least for the scalar–vector interaction (α2

0 = α2
1 , Q = 0). Indeed, in this

case the classical mass-shell equation obtained in [25] within the framework of manifestly
covariant Hamiltonian description in T ∗

M
2
4 after a certain gauge fixing [17], can be put in the

form

J + C = ãJ0 + b̃J1 + d̃J2 + C = 0 (6.13)
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where

ã =
(

1

β
− β

m2
1m

2
2(µ

2 − 1)

M2

)
mM d̃ = 0

b̃ = −
(

1

β
+ β

m2
1m

2
2(µ

2 − 1)

M2

)
mM.

(6.14)

The generators J0, J1 and J2 of the Lie algebra so(2, 1) are scalar functions of some inner
canonical variables k, z. In terms of variables ξ, q they have the same form as generators (6.5)
with Q = 0.

The Killing form of the element J̃ of the Lie algebra so(2, 1) in equation (6.13) is equal to
(4.15). Thus, using a quantization method such as that above, we obtain a quantum equation
in the form (5.3) and as a result we obtain the mass spectrum (5.24) with the quantum number
n = k + l. The problem of the spacetime interpretation of the Hamiltonian description in
this case is solved due to its immediate relationship with the Fokker-type action integral
[17, 25].

One can show that there exists a transformation (k, z) �→ (ξ, q)which transforms equation
(6.13) into equation (4.8). We now assume that the relations between the covariant and the
canonical variables are of the same form for arbitrary α0, α1. Then, using the results of [17],
we obtain

xµa = Xµ +
[
�T(P/M)

]µ
νe
ν
a(ξ, q) (6.15)

where

e0
a = 1

M

(
(−)ā m

2
q − (m2 −m1)(M

2 + 2m2)

2M2
q + (ξ · q)

)
a = 1, 2

eia = 1

M

(
(−)ā m

2
qi − (m2 −m1)(M

2 − 2m2)

2M2
qi + qξ i

)
ā = 3 − a

(6.16)

and

X0 = t (6.17)

Xi = Ri − (P × S)i

M(M +H)
(6.18)

are the well known Pryce centre-of-inertia variables. The matrix

‖�µ
ν‖ =

∥∥∥∥∥∥∥∥
P0

|P |
Pj

|P |
Pi

|P | δij +
PiPj

|P |(|P | + P0)

∥∥∥∥∥∥∥∥
(6.19)

describes a pure boost transformation into the centre-of-inertia reference frame [17]. Equations
(6.15)–(6.19) correspond to the special choice of general expressions for the covariant
coordinates proposed in [42]. Using expressions (6.11) for the generators of the Poincaré
algebra it is easy to verify that quantities (6.15) have proper transformation properties, i.e. they
really correspond to covariant particle coordinates.
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7. Conclusions

The traditional point of view on the relativistic few-body problem is based on quantum field
theory. Mostly, wave equations describing few-body states are derived from Bethe–Salpeter-
type equations via various reduction schemes. Unfortunately, this method is not free from
difficulties and ambiguities. Indeed, as is well known [43–45]: (a) Bethe–Salpeter equations
have unphysical solutions; (b) the relative time variable plays a dynamical role; (c) perturbation
theory must be used to obtain the corresponding kernels; (d) the approach is hard to apply
for more than two particles. Even the recent attempts to put the Bethe–Salpeter equation
on rigorous mathematical grounds [46] crucially depends on the rigorous construction of
the quantum field theory which is absent in M4 (see, e.g., [47]). Moreover, the relativistic
quantum mechanical description obtained from the Bethe–Salpeter-type equation does not
have, in general, a direct spacetime interpretation [48].

Therefore, it could be suitable to accommodate the idea that starting from classical field
theory we may avoid some of the difficulties in the description of the relativistic few-body
problem. The natural link between classical field theory and relativistic particle mechanics is
given by the formalism of Fokker-type action integrals. One of the most important features of
the Fokker-type action integrals is an obvious spacetime interpretation of the corresponding
relativistic models, which are related to a field-theoretical description of particle interactions.
It is preserved for two-particle systems with time-asymmetric interactions after transition to the
Hamiltonian description. The preservation of such a feature after further quantization could
be the key to the solution of many problems.

In this paper we have considered a two-particle system with Coulomb-like interactions
which are mediated in the two-dimensional Minkowski space by massless relativistic fields
in a time-asymmetric manner. This corresponds to the choice of the time-asymmetric Green
function of the d’Alembert equation and means that the first particle responds only to a retarded
field and the second particle responds to an advanced field.

Using such a Poincaré-invariant model, we avoid all difficulties related to non-locality
of the description based on the Fokker-type action integrals. Our system is described by the
Lagrangian function depending only on covariant particle coordinates and velocities. This
Lagrangian is the starting point for our studies in the present paper.

The two-particle Lagrangian (3.6) with the interaction functionF(δ) = α0+α1δ describing
the superposition of the scalar and vector interactions leads to the mass-shell equation in
the form of a linear relation between the canonical generators of the Lie algebra so(2, 1).
Demanding the preservation of this algebraic structure we have constructed a quantum
mechanical description. In such a pure algebraic way we have obtained the mass spectrum
which in particular cases agrees with the one-particle problem in an appropriate external field.

A more difficult problem of the quantization of the time-symmetric Wheeler–Feynman
theory still remains unsolved. We only note that within the linear approximation in the coupling
constant both theories coincide, and the mass spectrum (5.13) in the electromagnetic case
(α1 = 1, α0 = 0) agrees perfectly with the results obtained within the framework of various
more or less consistent methods from quantum electrodynamics in the several papers [49–51]
(see also [39, 49] for the case of scalar interaction).

Particular attention has been paid to the question of the relation between the relativistic
wave equation [1, 2] and our description. In the rest frame this equation also takes the form
of a linear relation between generators of so(2, 1) so that the vector of the algebra has the
same Killing form as in our case. As a result, in the case of the vector interaction both
treatments lead to the same mass spectrum. Both equations are related by the transformation
from SO(2, 1). All the coefficients in our mass-shell equation are immediately obtained from
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the Lagrangian. This made possible the generalization of Barut’s wave equation for other
interactions besides the electromagnetic one. The obtained values of coefficientsA1, A2, A3, B

and D in equation (6.3) follow from the algebraic quantization of the Fokker-type action for
the linear superposition of the scalar and vector time-asymmetric interactions. Moreover, all
the equations of the type (6.3) which lead to the same Killing form (4.14) will give the same
mass spectrum. We do not consider the possibility of further generalizations of equation (6.3)
allowing arbitrary coefficients (cf [5]). Although infinite-component wave equations like (6.3)
have their own physical problems (tachyonic states and so on, see, for example, [48]), we
consider these equations as technical tools for constructing mass spectra and eigenstates of the
given two-body problem.

The perfect agreement of our mass spectra with the results of other relativistic formalisms
stimulated us to construct the classical relativistic Hamiltonian model which corresponds to the
two-particle system in M4. In the four-dimensional spacetime the problem of the construction
of a canonical realization of the Poincaré group supplemented by the spacetime interpretation
in the front form of dynamics [26] is a much more complicated and ambiguous task than in the
two-dimensional Minkowski space. Here we use the approach developed by Duviryak in [17],
which allows one to construct the complete Hamiltonian description including the covariant
particle worldlines within the Bakamjian–Thomas-like canonical realization of P(3, 1). In
our classical relativistic two-particle Hamiltonian model the mass-shell equation has the same
algebraic structure as the corresponding equation in the two-dimensional variant of the front
form. Therefore, the quantization of the inner motion will give mass spectra (5.13) and (6.7)
with a non-zero value of orbital quantum number.

The choice of the relation between the canonical variables determining the canonical
realization of P(3, 1) and the covariant particle coordinates in the form (6.15) is caused by
the connection of the mass-shell equation for the scalar–vector interaction (α2

0 = α2
1) with the

time-asymmetric Fokker-type action integral in M4 [25]. The question of the correspondence
between the constructed Hamiltonian model with arbitrary values of α0, α1 and the Fokker-type
action in M4 still remains an open problem. However, one can show that in the second-order
approximation in the coupling constant such a relation really does exist [52].

As we have seen the dynamical group SO(2, 1) arises in the various treatments (non-
relativistic case, infinity-component relativistic wave equation, Fokker-type action integrals)
connected with the two-particle Coulomb problem. Therefore, it is very important to
understand whether the appearance of this dynamical group is caused only by the particular
formalism of relativistic mechanics (and therefore by a certain ‘simplification’ of the field
theory) or whether it is typical of a two-particle system with particular types of field
interactions. The existence of such an algebraic structure of the mass-shell equation plays
a prominent role on the quantum level and enables us to obtain mass spectra without an
explicit realization of operators in certain Hilbert space. To obtain a complete quantum-
mechanical description it is necessary to construct a representation for which functions of
the form (5.7) are orthonormal and span some Hilbert space of our problem. The role and
importance of the dynamical group on the classical level are still not clearly understood. It
poses the challenging problem of dynamical equivalence of the classical systems described by
mass-shell equations which contain different elements of the Lie algebra so(2, 1) but have the
same Killing form.
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